GEOMETRIC APPROACH TO NON-CIRCULAR CONE AND SPHERE INTERSECTION CURVES

September 2012

Kyle A Martin kyle.martin@mosaicsgis.com

Keywords: quadric surface, cone, sphere, intersection curve

Abstract

Using work based by Miller 1987 for the geometric approach to the intersection of a circular cone and a sphere, we show the derivation for the intersection of a non-circular cone and sphere.

Background

Miller 1987 described a geometric approach to the intersection curve for circular cones, and spheres. Miller expressed the conical surface parametrically as

$$P(s,t) = \vec{B} + s\left(\overline{\delta(t)} + \vec{w}\right) \qquad (1),$$

where

$$\overrightarrow{\delta(t)} = \tan(\alpha) \left(\cos(t)\overrightarrow{u} + \sin(t)\overrightarrow{v}\right)$$
 (2).

For each t, $\overline{\delta(t)}$ is a vector of length $\tan \alpha$ and is perpendicular to the cone axis \vec{w} .

The intersection curve between a cone and sphere was found by substituting (1) into the implicit equation for a sphere $((\vec{P} - \vec{B}) \cdot (\vec{P} - \vec{B}) - r^2 = 0$,

$$\left(\left(\overrightarrow{B_p}-\overrightarrow{B_o}\right)+s\left(\overline{\delta(t)}+\overrightarrow{w_p}\right)\right)\cdot\left(\left(\overrightarrow{B_p}-\overrightarrow{B_o}\right)+s\left(\overline{\delta(t)}+\overrightarrow{w_p}\right)\right)-r_o^2=0 \quad (3).$$

Solving for s results in a quadratic equation (Appendix A) whose coefficients are

$$a = (\overline{\delta(t)} \cdot \overline{\delta(t)}) + 1,$$

$$\boldsymbol{b}(\boldsymbol{t}) = 2\vec{b} \cdot \left(\overline{\delta(t)} + \overline{w_p} \right), \tag{4}$$

$$\overrightarrow{b} = \overrightarrow{B_p} - \overrightarrow{B_o},$$

$$c = (\overrightarrow{B_p} - \overrightarrow{B_o}) \cdot (\overrightarrow{B_p} - \overrightarrow{B_o}) - r_o^2,$$

Since $\overline{\delta(t)}$ is a vector of length tan α , Miller 1987 replaced the squared length of $\overline{\delta(t)} \cdot \overline{\delta(t)}$ with $\tan^2 \alpha$ in the term for a resulting in the same value for all t.

Non-Circular Cones

To understand the changes required for non-circular cones, let us examine how the solution works for circular cones. The three primary areas of examination are $\overline{\delta(t)}$, the resultant vector $\overrightarrow{\delta(t)} + \overrightarrow{w}$, and a geometric representation of equation (3) illustrated in figure 1. The formula for $\overline{\delta(t)}$ in (2), is the parametric equation for a circle oriented along \vec{u} and \vec{v} with a radius of $\tan \alpha$. $\delta(t)$ is perpendicular to \vec{w} and the resultant vector between the two yields a vector on the conical surface. The resultant vector (i.e., $\overline{\delta(t)} + \vec{w}$) is then scaled by s which is the unknown that is solved for in (3) (Figure 1). Therefore as long as $\overline{\delta(t)} + \vec{w}$ lies upon the desired non-circular conical surface, then the solution found in (3) can be applied to non-circular cones. Rewriting (2) to evaluate a vector on an ellipse rather than a circle we have

$$\overrightarrow{\delta(t)} = (\tan(\alpha)\cos(t)\overrightarrow{u}) + (\tan(\beta)\sin(t)\overrightarrow{v}) \tag{5}.$$

We now apply $\overline{\delta(t)}$ to (3) (Appendix A) which results in the quadratic equation coefficient formulas found in (4).

Circular cones yielded $\overline{\delta(t)}$ that would always be of length tan α and which restricted the α coefficient to only one value for all values of t. Visually this can be described as the same angle between the resultant vector $(\overline{\delta(t)} + \overrightarrow{w})$ and \overrightarrow{w} for all values of t (i.e., $\tan \alpha = \frac{\left|\overline{\delta(t)}\right|}{\left|\overrightarrow{w}\right|}$). Noncircular cones will yield varying lengths of $\overline{\delta(t)}$ from (5), thus resulting in varying angles between $(\overline{\delta(t)} + \vec{w})$ and \vec{w} hence resulting in a different conical surface than circular cones.

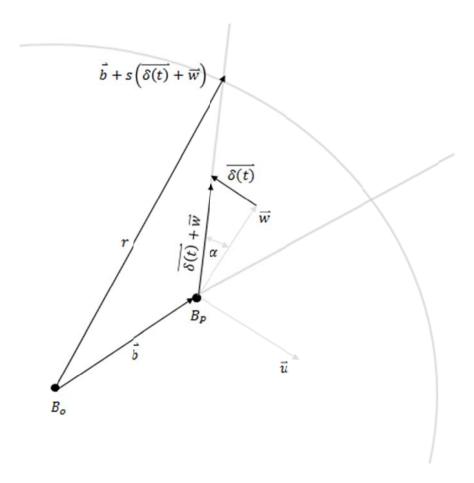


Figure 1. Cross section of a sphere centered at B_o with radius r, and cone at vertex B_P with opening angle α oriented by $\vec{u}, \vec{v}, \vec{w}$. \vec{v} is directed into the diagram. The cross section geometrically illustrates the intersection curve between a sphere and cone defined by the equation, $\left(\left(\overrightarrow{B_p}-\overrightarrow{B_o}\right)+s\left(\overline{\delta(t)}+\overrightarrow{w_p}\right)\right)\cdot\left(\left(\overrightarrow{B_p}-\overrightarrow{B_o}\right)+s\left(\overline{\delta(t)}+\overrightarrow{w_p}\right)\right)-r_o^2=0.$

Appendix A: Derivation of the quadratic coefficients in (3)

Consider the following equation to find the intersection between a cone and a sphere,

$$\left(\left(\overrightarrow{B_p} - \overrightarrow{B_o}\right) + s\left(\overline{\delta(t)} + \overrightarrow{w_p}\right)\right) \cdot \left(\left(\overrightarrow{B_p} - \overrightarrow{B_o}\right) + s\left(\overline{\delta(t)} + \overrightarrow{w_p}\right)\right) - r_o^2 = 0.$$

Let $\overrightarrow{B_p} - \overrightarrow{B_o}$ be equal to \overrightarrow{b} , $\overline{\delta(t)} = \overrightarrow{v}$, and $\overline{w_p} = \overrightarrow{w}$. Rewriting the equation we get

$$(\vec{b} + s(\vec{v} + \vec{w})) \cdot (\vec{b} + s(\vec{v} + \vec{w})) - r_o^2 = 0.$$

Distribute the s, and we get

$$(\vec{b} + s\vec{v} + s\vec{w}) \cdot (\vec{b} + s\vec{v} + s\vec{w}) - r_o^2 = 0.$$

Now expand each vector's x component and multiply through to yield

$$b_x^2 + b_x v_x s + b_x w_x s + b_x v_x s + v_x^2 s^2 + v_x w_x s^2 + b_x w_x s + v_x w_x s^2 + w_x^2 s^2.$$

Group like terms

$$b_x^2 + 2(b_x v_x s) + 2(b_x w_x s) + v_x^2 s^2 + 2(v_x w_x s^2) + w_x^2 s^2$$
.

Now factor out an s^2

$$s^{2}(v_{x}^{2} + 2(v_{x}w_{x}) + w_{x}^{2}) + s(2(b_{x}v_{x}) + 2(b_{x}w_{x})) + b_{x}^{2}.$$

The equation above has been organized to resemble a quadratic equation $(ax^2 + bx + c = 0)$. For neatness and clarity purposes only the x components are presented, and like terms for y and z only need to be inserted into each quadratic coefficient (i.e., a, b, and c). Let's finish deriving each quadratic coefficient including the y and z values for the vectors. For the c coefficient

$$c = (b_x^2 + b_y^2 + b_z^2) - r^2.$$

 $b_x^2 + b_y^2 + b_z^2$ is the squared length of \vec{b} , which we had reduced from $\vec{B_p} - \vec{B_o}$. This now equals Miller's form of c defined by

$$c = \left(\overrightarrow{B_p} - \overrightarrow{B_o}\right) \cdot \left(\overrightarrow{B_p} - \overrightarrow{B_o}\right) - r_o^2.$$

For the b coefficient we rewrite $s(2(b_xv_x) + 2(b_xw_x))$ by factoring out $2\vec{b}$ and we get

$$b = 2 \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \cdot \begin{bmatrix} v_x + w_x \\ v_y + w_y \\ v_z + w_z \end{bmatrix}$$

This is now equal to Millers form of b defined by

$$b(t) = 2\vec{b} \cdot \left(\overrightarrow{\delta(t)} + \overrightarrow{w_p} \right).$$

For the a coefficient we get

$$a = (v_x^2 + v_y^2 + v_z^2) + 2(v_x w_x + v_y w_y + v_z w_z) + (w_x^2 + w_y^2 + w_z^2).$$

 $w_x^2 + w_y^2 + w_z^2$ is the squared length of a normal vector and will always be equal to 1. $v_x^2 + v_y^2 + v_y^2$ v_z^2 is equal to the squared length of the vector \vec{v} . $v_x w_x + v_y w_y + v_z w_z$ is the dot product between perpendicular vectors and is 0. Thus a is

$$a = (\vec{v} \cdot \vec{v}) + 1.$$

References

Miller, James R., 1987. Geometric Approaches to Nonplanar Quadric Surface Intersection Curves, ACM Transactions on Graphics, Vol. 6, No. 4, October 1987, Pages 274-307.