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Abstract

Using work based by Miller 1987 for the geometric approach to the intersection of a circular
cone and a sphere, we show the derivation for the intersection of a non-circular cone and sphere.

Background

Miller 1987 described a geometric approach to the intersection curve for circular cones, and
spheres. Miller expressed the conical surface parametrically as

P(s,t) =§+s(m+v7) (1),
where
5 = tan(a) (cos(t)u + sin(t)v) (2).

For each t, §(t) isavector of length tan @ and is perpendicular to the cone axisw.

The intersection curve between a cone and sphere was found by substituting (1) into the implicit
equation for asphere (P —B) - (P — B) —r? = 0,

(B ~B) +s(50+7))- (B ~B) +s (5@ +7)) - =0 ()
Solving for sresultsin a quadratic equation (Appendix A) whose coefficients are

a= (5 61) +1,

b(t) = 2b- (8(t) +W,), (4)
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b=, -5,
c= (B, —B,) (B, —B,) — 15,

Since 6(t) is a vector of length tan a, Miller 1987 replaced the squared length of &(t) - 6(t)
with tan? « in the term for a resulting in the same value for al t.

Non-Circular Cones

To understand the changes required for non-circular cones, let us examine how the solution
works for circular cones. The three primary areas of examination are @ the resultant vector
@ + w, and a geometric representation of equation (3) illustrated in figure 1. The formula for
@ in (2), is the parametric equation for a circle oriented along u and v with a radius of tan a.
@ is perpendicular to w and the resultant vector between the two yields a vector on the conical
surface. The resultant vector (i.e., m + w) is then scaled by s which is the unknown that is

solved for in (3) (Figure 1). Therefore as long as §(t) + w lies upon the desired non-circular
conical surface, then the solution found in (3) can be applied to non-circular cones. Rewriting (2)
to evaluate a vector on an ellipse rather than a circle we have

5 = (tan(a) cos(t)u) + (tan(B) sin(t)v) (5).

We now apply ﬁ to (3) (Appendix A) which results in the quadratic equation coefficient
formulas found in (4).

Circular cones yielded m that would always be of length tan « and which restricted the a
coefficient to only one value for all values of t. Visually this can be described as the same angle

. . _ 50
between the resultant vector (6(t) + w) and w for all values of t (i.e, tana = %). Non-
circular cones will yield varying lengths of % from (5), thus resulting in varying angles

between (m + w) and w hence resulting in a different conical surface than circular cones.
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Figure 1. Cross section of a sphere centered at B, with radius r, and cone at vertex B, with
opening angle a oriented by u,v,w. v is directed into the diagram. The cross section
geometrically illustrates the intersection curve between a sphere and cone defined by the

equation, ((B, — B) +5 (8 + ) ) - (B, ~ Bo) +5 (60 + 7)) - 12 =
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Appendix A: Derivation of the quadratic coefficientsin (3)

Consider the following equation to find the intersection between a cone and a sphere,
(@ -B) +5 (6@ +7))- (B - B,) +5 (5@ +7)) -2 = 0.
Let B, — B, beequal to b, 5(t) = B, and wy, = w. Rewriting the equation we get
(E+s(ﬁ+v7))-(E+s(ﬁ+W))—r02 = 0.
Distribute the s, and we get
(E+ST3+SW)'(B+S13+SW)—T‘OZ = 0.
Now expand each vector’s x component and multiply through to yield
bZ + b,v,s + bywys + byv,s + VZs? + v,w, 5?2 + byw,s + v,w,s% + w2s?.
Group like terms
bZ + 2(byvys) + 2(bywys) + vEs? + 2(v,wys?) + w2s?.
Now factor out an s2
S2(V2 + 2(vewy) + w2) + s(2(byvy) + 2(bywy)) + b2.

The equation above has been organized to resemble a quadratic equation (ax? + bx + ¢ = 0).
For neatness and clarity purposes only the x components are presented, and like termsfor y and z
only need to be inserted into each quadratic coefficient (i.e., a, b, and c). Let’s finish deriving
each quadratic coefficient including the y and z values for the vectors. For the c coefficient

¢ = (b% + b2 + bZ) — 2.

bZ + b2 + b? is the squared length of b, which we had reduced from B, — B,. This now equals
Miller’s form of ¢ defined by

o= B-F) B-F)-ri
For the b coefficient we rewrite s(2(b,v,) + 2(b,w,)) by factoring out 2b and we get
X

b
bzzby-
b

z

vy + W,
‘Dy-l-Wy
v, +w,
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Thisisnow equal to Millersform of b defined by
b(t) = 2b- (8(6) +Wy).
For the a coefficient we get
a= (vZ+v2+v2)+2(vwy +vywy +v,w,) + (W2 + wi +w?).

wy + wy + w7 isthe squared length of anormal vector and will always be equal to 1. v7 + vy +
v7 is equal to the squared length of the vector v. v,w, + v,w, + v,w, is the dot product
between perpendicular vectorsand is0. Thusais

a= (v-v)+1.
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