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Abstract: 

Laser scanning has seen a significant increase in collection frequencies over the past several 
years. Increased collection frequencies, yield higher point densities, larger point cloud datasets 
and has significant impacts to the growth of algorithms. Algorithms that are marginally practical 
now, will likely suffer impractical running times with point densities from newer or more 
advanced sensor technologies. The point in polygon operation in particular plays a significant 
role in point cloud applications and is impacted when point densities increase. In general, the 
running time of a point in polygon algorithm will increase linearly with point counts. We 
propose a nearest edge distance to polygon heuristic to minimize the increase in point tests as 
point densities increase, and will show that the heuristic produces logarithmic growth in point 
tests as point densities increase. Use of the nearest edge distance heuristic can be a very useful 
tool for existing point in polygon algorithms to adapt more practically to higher point density 
datasets that are common among newer laser scanning technologies.  

 

Introduction 

Laser scanning has seen a significant increase in collection frequencies over the past several 
years. Increased collection frequencies yield higher point densities, and for some laser scanning 
technologies such as vehicular (VLS) or terrestrial (TLS) laser scanning, the point densities can 
be significantly higher than airborne (ALS) collections. VLS and TLS is generally <= 5 cm point 
spacing and ALS is generally >= 0.5 m (Gong et al., 2012; Fowler et al., 2007; author 
observation). Synthetically derived point clouds using highly overlapping high resolution 
imagery (e.g., 3D vision) can produce even higher point densities (e.g., as low as 1 cm point 
spacing) than TLS or VLS (Leberl et al., 2010).  With these increased densities comes the need 
to handle much larger point cloud datasets, and it is not inconceivable for these larger point 
cloud datasets to render existing algorithms inadequate or impractical when the nominal point 
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spacing is cut in half or by a quarter for example (i.e., roughly a 4 and 16 fold increase in total 
point counts respectively). 

The point in polygon operation in particular plays a significant role in point cloud applications 
and for example, is used to classify points within or out of hydrological areas, or buildings 
(author observation). The invention of better point in polygon algorithms is of significant interest 
in computational geometry, and is a basic operation in computer graphics. Various strategies and 
solutions that range from ray tracing, counting edge intersections, to angular summations have 
been invented that solves the point in polygon problem (Haines, 1994; Preparata, 1985; de Berg, 
2008; Devadoss, 2011). Generally the solutions apply to convex only or to both concave and 
convex polygons and the analysis of the algorithms range from O(log n) time (Preparata, 1985), 
to O(n) time (Haines, 1994; Preparata, 1985). In all cases, n represented the number of vertices in 
the polygon. 

The implementation of a point in polygon algorithm is a foundational component to any point 
cloud software system. And in order for the system to be practical, a quality point in polygon 
algorithm must be implemented. It is not uncommon for the number of point in polygon tests to 
be in the millions for large polygons that for example may exist in low lying hydrological areas. 
These polygons are not only large in area but will have thousands of vertices, multiple and non-
contiguous parts, and likely a number of islands (i.e., donuts, or out areas). 

Previous studies on point in polygon problems have focused primarily on the increasing 
complexity of the polygon itself in terms of the numbers of vertices. The complexity of the 
polygon ultimately defines the size of the problem, thus resulting in algorithms where 
performance is directly related to the complexity (Haines, 1994; Walker, 1999). However, no 
studies have been found by the author that focus on a constant polygon with increasingly higher 
numbers of point in polygon tests as would be seen if the density of points over an area 
significantly increased due to more advanced laser sensor technologies.  

In this study, we assume that the complexity of the polygon would not be required or expected to 
change as would be the case for many laser scanning update projects (author observation), and 
that existing algorithms would incur a linear increase in the number of point in polygon tests to 
handle the increase in point density. Consider the following statement that describes the total 
point in polygon test running time for any given algorithm: 

nP * T                                                     (1) 

where nP is the number of points or in this case also the number of point in polygon tests, and T 
is the running time for the point in polygon algorithm for a single test. 

If nP were quadrupled, the total number of tests would increase linearly 

[f(nP)] * T                                              (2) 
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where f is the factor representing the increase in point counts. 

The linear growth of the number of point tests can be reduced or the shape of the growth can be 
changed if the number of point tests can be decreased or minimized and not allowed to grow at 
the same rate as the point density. A reduction in the slope of the linear growth of point tests is 
shown by 

O(nPt*T) + (nP-nPt)[O(1)]                          (3) 

where nPt equals the number of points tested. So as nPt approaches zero, a higher number of 
points (i.e., approaching nP, total number of points) takes constant time (i.e., nP-nPt), to process 
the point in polygon operation, thus reducing the total running time. The magnitude of nP - nPt 
serves as a measure of how well the minimization of the number of point tests is performing. 
Magnitudes closer to nP have better minimization functions because more constant time 
operations are performed. 

Here we propose a near distance to edge heuristic that minimizes the increase in nPt very 
effectively and can be adopted by any algorithm that can be modified to provide a nearest 
distance from any edge in the polygon to the test point. 

 

Nearest Distance to Edge Heuristic 

When performing a point in polygon test, the nearest edge distance (nD) from the polygon to a 
test point (Tp) is compiled. nD and Tp can then be used to eliminate future tests and conclude 
that a candidate point (Cp) has the same state or spatial relationship (q) to the polygon as the 
previous test (i.e., Tp). Therefore we postulate the following proposition 

(cTpD < nD) -> q                                     (4) 

where cTpD is the euclidean distance between Tp and Cp, and nD  is the nearest edge distance 
from Tp to the polygon boundary. If cTpD < nD then q is the same state or spatial relationship as 
the one found for Tp. 
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Figure 1 shows a graphical demonstration of the proposition. The minimum edge distance of nD 
says that no line segments of the polygon can be within region A. And if there are no polygonal 
line segments within region A, the line segment TpCp cannot cross or intersect any line segment 
of the polygon. Since no crossings can exist and using logic from the ray crossings point in 
polygon test (O’Rourke 1998), any point within region A (i.e., cTpD < nD), cannot be a different 
topological relationship than Tp. Thus no candidate points require testing within region A. Once 
the distance between Tp and Cp is greater than or equal to nD, a new test is performed and Tp 
and nD is reset.  

The programmatic execution of figure 1 is illustrated in the prototype code 

double nearDist = -1; 
Point testPoint; 
bool currentState; 
 
for each (Point p in points) { 
     if (nearDist < 0 || p.GetDistance(testPoint) >= nearDist) { 
          currentState = polygon.PointIn(p,&nearDist); 
          testPoint = p; 
     } 
     //do something with the state 
} 
 
A simple scenario can show the increase in nPt (Eq. 3) as the point density increases is 
logarithmic when using the nearest distance to edge heuristic. Consider the scenario in figure 2 
with a single edge where each point is considered consecutively from the left to right. Using the 

Figure 1: Schematic of the nearest distance to edge 
heuristic proposition.  No point within region A can 
have a different topological relationship to the 
polygon than the relationship that Tp has with the 
polygon. 
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nearest distance to edge heuristic, the point tests are displayed with a black dot and a grey dot is 
a point that is skipped 

 

 

 

 

It is observed in figure 2b that each time the point spacing is cut in half one additional point test 
is performed for each edge encountered. As nP increases to infinity (i.e., point spacing is halved 
infinitely), the derivative of the function that determines nPt approaches zero. The simple case in 
figure 2 suggests that a similar logarithmic growth curve for nPt would be observed using real 
laser scanning and polygonal data. 

 

Testing the nearest Distance To Edge Heuristic 

To test the heuristic a real world polygon was chosen (NCFMP, 2012), and synthetically derived 
points were created in the polygon’s area of interest. The polygon physiographically represents a 
winding wide river/lake polygon and serves as a practical and realistic challenge to the nearest 
distance heuristic and is shown in figure 3.  

 

Figure 2: Moving from left to right, points that are tested (black circles), and skipped (grey 
circles) using the heuristic. Point spacing is cut in half in figure 2b and results in one 
additional point test displayed as a black triangle. 

Figure 3: The polygon used to test the nearest 
distance heuristic. 
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An adequate series of point cloud datasets with increasing point densities was not available to the 
author. Instead, synthetically generated points were used in the test. If a series of actual point 
cloud datasets with increasing point densities were to be studied, it would be anticipated that on 
average there would be a constant number more points between any two points of the lesser 
density (e.g., higher frequency sensor captures an additional point(s) between points of a lower 
frequency sensor), thus a similar pattern to figure 2 would result. Because of this similarity, the 
results produced by synthetic or actual laser points would not differ significantly with respect to 
any findings of the nearest distance to edge heuristic. 

The synthetically generated points were generated on regularly spaced intervals and in a sinuous 
scan line pattern to closely simulate the point ordering that would be encountered in actual point 
cloud datasets (Fowler, 2007). Six datasets were synthetically generated with each consecutive 
dataset representing quadruple the amount of data as the one before (i.e., point spacing is cut in 
half). A program was built to iterate the points in the same fashion as the prototype code and the 
number of point in polygon tests were tabulated as a ratio of nPt (Eq. 3) for dataset d (nPtd) to 
nPt in the least dense dataset (nPt0). The ratio of nPt (nPtd/nPt0) was plotted against its 
respective point density factor and is presented in figure 4. 

 

 

 

To facilitate the examination of the growth of nPt as point density increased, nPtd was 
normalized to the least dense dataset (i.e., nPt0). Figure 4 graphically shows that nPt was 
approximately 1, 2, 5, 12, 27, and 59 for each dataset of increasing point density (1, 4x, 16x, 64x, 
256x, 1024x). From these results we see that the slope of growth curve in nPt flattens as the 
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point density increases (i.e., the derivative of the function that determines nPt with respect to 
point density approaches zero). Thus a logarithmic growth of nPt results as nP increase (Figure 
4). 

 

Discussion 

The nearest distance heuristic is significantly sensitive to the ordering of the points. If the 
sequential order of the points is such that the distance from one point to another (cTpD, Eq. 4) is 
greater than or equal to nD (Eq. 4), the proposition is false resulting in a point test. Therefore the 
magnitude of the minimization of tests is dependent on the ordering of the points. If the points 
are perfectly spaced apart so that cTpD exceeds nD every time no benefit is gained, however the 
more clustered the sequential movement of points are the better the heuristic performs in 
minimizing nPt (Eq. 3). This assumption may render this heuristic less valuable when used with 
technologies that do not produce a natural proximity sequence of the points. Laser scanning point 
clouds exhibit this natural proximity sequence (Fowler, 2007). And to verify that the point order 
of laser scanning data has no significant impact on the expected outcome of the heuristic, actual 
laser scanning points (NCFMP, 2012) were classified as in or out of the polygon using the 
nearest distance heuristic. Out of 540,268 points within the extent of the polygon, only 7.8% of 
the points were tested. If the data increased in density, one would expect to see the number of 
point in polygon tests to grow logarithmically in a similar fashion as figure 4.  

Significant improvements to the heuristic can be made by employing spatial data partitioning 
techniques that allow for quick elimination of large numbers of points such as those that would 
exist in the nodes of a tree data structure (Rosen, 2007; Goodrich, 2004). Using the bounding 
box of the node and its furthest distance to the previous test point, the containing points in the 
nodes can be eliminated based on the near distance heuristic proposition. 

Because the nearest distance heuristic requires only a nearest distance between test geometry and 
an opposing geometry (nD, Eq. 4), and a calculation of the furthest distance between the test 
geometry, and candidate geometry (cTpD, Eq. 4), an inherent flexibility exists that allows the 
heuristic to be used by other geometry combinations and in other spatial relationships. For 
example, one may want to classify the points within a distance of a polyline. By simply 
modifying the nearest distance metric, one could quickly identify upcoming points as outside the 
buffer, still within the buffer, or intermediate, requiring a test. The heuristic can also be extended 
to work in 3d by returning 3d distances of 3d geometries rather than distances on the xy plane. A 
promising use of the heuristic in 3d is for classifying points based on a topological relationship to 
a surface (i.e., above, below, within a distance to, or on the surface). 
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Conclusion 

As sensor technologies continue to provide higher point densities, algorithms must have a 
reasonable growth potential. Algorithms that are marginally practical now, will likely suffer 
impractical running times with point densities from newer or more advanced sensor 
technologies. The point in polygon operation is a foundational computational geometry concept, 
and is impacted significantly when point densities increase. The nearest distance to edge 
heuristic provides a methodology to minimize the impact of increasing point densities on point in 
polygon algorithms. The overall impact or running time is reduced by minimizing the number of 
point tests performed using a nearest distance to edge heuristic. It is this nearest distance to any 
polygon edge that allows for quick classification of any subsequent points not exceeding the 
nearest edge distance. The number of point tests increase logarithmically as point density 
increases. The reduction in the number of point tests as point counts increase allows the point in 
polygon algorithm to adapt more reasonably to newer laser technologies and sensors that 
produce significantly higher point densities than older or less advanced sensors. 
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